Découverte d'associations sémantiques pour le Web Sémantique Géospatial - le framework ONTOAST. (Semantic association discovery for the Geospatial Semantic Web - the ONTOAST framework)
نویسنده
چکیده
It is now commonly accepted that over 70% of web pages contain spatial and temporal referencesthrough the use of place names, addresses, geographical coordinates, dates, etc. However, the temporal and spatialdescriptions are currently unexploited by search engines, when they could be used in the search process for defining thecontext of a query, for query disambiguation, for result classification, etc. Based on this observation, our work focuseson the study of representation and reasoning techniques for spatial and temporal information in the context of the futureGeospatial Semantic Web. The objective of the Geospatial Semantic Web is similar to that of the Semantic Web : attachto spatial and temporal data formal descriptions (metadata) that can be interpreted by humans, but mostly by machines,so that the automated processing of this data by software agents becomes possible and efficient.We propose in this thesis a spatial and temporal reasoner, which is compatible with the standard ontology languageOWL and with the evolution OWL 2. The system, called ONTOAST, is able to exploit both spatial and temporalquantitative data and spatial and temporal qualitative relations in order to infer implicit spatial and temporal qualitativerelations. The goal is to answer questions such as : "What cities are located in the southwest of France ?", "What arethe tourist attractions near my current position ?" . . .This thesis also studies an alternative search paradigm, calledsemantic analysis, which aims the discovery of directand indirect relationships existing between two individuals described using RDF(S) graphs. In order to infer additionalsemantic associations and to increase the accuracy of the analysis, we propose an adaptation of the semantic analysis forOWL 2 ontologies. We also show that new and possibly interesting semantic associations can be discovered, by takinginto account spatio-temporal information which is usually attached to resources. Moreover, we propose to handle spatialand temporal contexts in order to limit the scope of the analysis to a region of space and a period of time. Thesemanticanalysis discovery process uses ONTOAST for reasoning with spatial and temporal information and relations.
منابع مشابه
Evaluation d'associations sémantiques dans une ontologie de domaine
Résumé : Dans une ontologie de domaine, une association sémantique entre deux entités (concepts, attributs d’un concept) est une représentation d’un chemin ou d’un lien sémantique (LS) indirect entre elles. Un défi prometteur pour le Web sémantique est de développer des méthodes pour découvrir des données fortement liées dans un nombre important d’associations sémantiques rassemblées à partir d...
متن کاملThe category of networks of ontologies
The semantic web has led to the deployment of ontologies on the web connected through various relations and, in particular, alignments of their vocabularies. There exists several semantics for alignments which make difficult interoperation between different interpretation of networks of ontologies. Here we present an abstraction of these semantics which allows for defining the notions of closur...
متن کاملTowards the Geo-spatial Querying of the Semantic Web with ONTOAST
One of the challenges raised by the construction of the semantic Web lies in the analysis and management of complex relationships (thematic, spatial and temporal) connecting several resources. The automatic discovery of such relations will improve the current capabilities of existing search engines. Spatial information plays an important role in the resources available on the Web, thus, integra...
متن کاملFiltering Out Bad Answers with Semantic Relations in a Web-Based Question-Answering System
De plus en plus de systèmes de question-réponses (QR) utilisent le Web pour trouver une réponse courte et précise à une question exprimée en langue naturelle. Dans cet article, nous présentons une méthode pour filtrer les mauvais candidats de réponses et re-ordonner les candidats dans notre module de QR en utilisant des relations sémantiques. L’idée est d’identifier la relation sémantique et l’...
متن کاملProjet ModRef : Migration de Données vers des Triplestores CIDOC-CRM
ModRef is a project from the laboratory Labex "Les passés dans le présent", which coordinates various projects on digital humanities. ModRef focuses more precisely on the semantic web and linked open data. The goal is to move heterogeneous data into triplestores also called data warehouses or collections of RDF files in order to improve the sharing, exchange and discovery of new knowledge. For ...
متن کامل